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Motivation

e Weak point of Peano Theorem and Picard Theorem: They are both local
results and tell nothing about the information on length of existence for
solution.

e Global result 1s good for applications. Solutions of IVP might not exist for all
f € R even though the differential equation 1s defined for 7 R. This raises
a question about maximal interval on which a solution can be defined.
Extensibility result gives how 1t will be from the local to the global.

e Lipschitz condition is a sufficient condition for uniqueness of solution and
how to verify is a technical concemn.

Motivated Example:
X =t 4x?

Riccati Equation:
x(0)=0




Applying Peano (Picard) Theorem. we find
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Some phenomenon arises: Q, < Q,.but s >h,!

Observation:

e This example motivates us that the solution, which 1s ensured by Peano
(Picard) Theorem, 1s extendable form [-#,. h,] to [-h,, h]:
e Peano (Picard) Theorem tells nothing about information on the length of

existence of interval. We have to develop a new result to characterize
extensibility property —Extensibility Theorem.




Extensibility of Solution

1) Some Notions

Definition 3.1 f:G — R”. where G 1s an open set of RxR", 1s said to satisfy a
local Lipschitz condition if for any (7,.x,)e G, there exists a neighborhood

(t,.x,) € U< G suchthat f satisfies a Lipschitz conditionon U .

Remark 3.1 Pay attention on the difference between local Lipschitz condition and
Lipschitz condition.




Definition 3.2 Let x(7) be a solution of the IVP on («. ). If there exists the other
solution (r) ofthe IVPon (&. ) such that

o (@ p)>(a. p).but (& p)# (. p):

o X(f)=x(¢) for te(a. p).
we say that x(7)(fe(a. f)) 1s extendable, and X(7) 1s said to be extension of
x(f) on (&, ). We say that a solution x(#) is non-extendable if no such extension
exists. That 1s, (e, ) 1s a maximal interval of existence of x(7). Denoted by

[ =(o_.0,).




2) Extensibility Process

Consider the IVP, where f:G — R" 1s continuous and local Lipschitz. For the
case where 7>7, only, <7, 1ssimilar.
o V(ty,x,)eG = The solution x(7) exists on [,:=[f,.f,+h,] with h, >0
by Peano theorem, so x(f,) with 7, =¢ +h, existsand (7,.x(¢,)eG:
e If (7,,x(f,)) G 1san interior point of G . then we apply Peano theorem at this
point once more and have a new interval I, =[f.¢, +h ] with 7 >0 on which

x(7) exists. Therefore x(7,) with 7, =7, +h, existsand (7,.x(f,)) G




If (7,.x(¢,)) is an interior point of G, then we repeat the step 2 to get an
mterval [, =[t,. t,+h,] with h,>0.---: to get I,=[r..t,+h ;] with

;
h; >0 onwhich x(z) exists. Then x(7) 1s now extended to o I.:

If G 1s open and bounded, 7, 1s smaller and smaller because x(f) — oG.

oG 1s aboundaryof G:

If G 1sclosed and bounded (compact), the extension will be terminated for some

step j=Kk because (7..x(f.)) i1s on OG ., which cannot be applied by Peano

theorem anymore.




Remark 3.2 The process shows that in all cases, /__ can be found. If G 1s open,

which 1s usually assumed, then 7__ must be open:

Remark 3.3 For [ with different (7,.x,)eG. I__ might be different! We hope

max

to know what conditions assure the same /__ for all (7,.x,)eG. This 1s a real

concern in ODE, which 1s referred as a global existence!!

Remark 3.4 In some case, x(f) will blow up at finite time (finite escape).

Example ¥ =% hasa solution x(f) = 1 with lmx(f)=o, [___ =(-=.1).
1(0)21 1—1 —1~

Remark 3.5 The process of extensibility is nothing special except for its asymptotic
behavior of solution. This i1s a real concern of extensibility process.




3) Extensibility Theorem

Theorem 3.1 (Extensibility Theorem) Suppose that G 1s open in RxR".
f:G—>R" 1s continuous (local Lipschitz). Then every solution of IVP has
extensibility up to the boundary of G . More precisely, if x:/__=(o_,0,)>R" 1sa
solution passing through (7. x,) € G. then for any compact set K — G there exist

t, and ¢, with 7, <7, <7, suchthat (r,x(¢))=K. (f,.x(t,)) =K.




Remark 3.6 This theorem states that any solution starting at poimnt in G can be
extended continuously to &G . which can also be formulized as follows.

lim {d (P(1). 6G) "+ P(t) [} == (F1)
!
where P(1)=(t,x(t)): d 1isa distance between p(f) and &G : | p(t)||= (1" +x°(1)>.
If G=RxR".then 6G isanemptyset. 1.e. d(P(7).6G)" =0. (F1) becomes
lim || P(7) || =.

It means that either / _ =(—0, %) (global existence) or if [/ =(®_,®,). where

IMNAX

o, <» and @_>-»_ then lim | x(7)|[= (finite escape).
oo,




Proof of Extensibility Theorem. We only prove the case of [f,.®,).

If o, =0, then 3 f,>1, st (t,.x(t,))eK because K 1s bounded in
G=RxR". If o, <». Show by contradiction. If 4 a compact K G s.t.
(t,x(r))e K forall fe[f,.®,).Since f 1sbounded (say M )on K. then we have

|20y =x(B) 1< [ f(s.x(s)) | ds |< M |17 |

So x(f) 1s uniformly continuous on [f,, @,). Then, x(®,)= lim x(7) exists and 1s
oo,

finite. Moreover, (@,.x(@,))K because K 1s closed. Then,
(o,.x(@,)eKcG
1s an interior point of & ., which shows that it 1s extendable at @, by Peano (Picard)

theorem. This contradicts the maximality of 7__ . O




Corollary 3.2 (Extensibility Theorem II) If 7(¢.x) e C(G)., where G— R"" isa

bounded domain, then, forx=x(7), t/___ =(®_, ®,), we have

lim d(P(t).6G)=0.

o (03)

Corollary 3.3 (Extensibility Theorem III) If f(z.x)e C(R"™"), then. for x=x(¢).
tel _=(o .o, ) 1tis alternative as follows.

e » =—w (@, =w).0r

o » >—w (o, <w).then lLm |[[x(#)|[=m.
t—=e’ (0])




Applications of Extensibility

Example 3.1 If x'= f(¢,x), where feC and || f(f.x)[[€M forall (f,.x)eRxR",
show that for any (7,.x,), the solutton x(#) has I__=(—=,x).
Proof. For any (7,.x,).we have x(t)=x,+ J.:O f(s.x(s))ds . and then

151 11 |1+ ] 11 £(s.(5) [ ds | < 1% ||+ [ 1 =1, |

Show by contradiction. If 7, <7f<®, with @, <=, then
[x@O)1< 1%, [[+M (@, ~1,) <= = Im [ x(D)]| <.

This contradicts Extensibility theorem. It must have @, =0 It 1s similar to show the

caseof @ <r<t, with @ >-o. O




Example 3.2 All solutions of the Riccati equation x'=¢"+x~ have a finite escape.
Proof. Only show [f,.®,) with @, <. It is similar to show @ <7<t, with
o_>—»n.If o, <0, then, o, <»o. If @, >0, then there exists 7, >0 such that
[t,.»,)Z|t,. ®,). Then we have

d x(t)

MOzt X)), te[tlo,) & ——
‘ S tl+x7(1)

>dt, te[t,o,).

Integration on both sides, we obtain

1 x(r A’(fl)
—|darctan =——— arctan
[arct t

|2t—1t,>20, te[t,.o,).
."1 ."1 ."1

L T . T
From the above it yields Oﬂf_fl“—:f_= fe|tf,,®,). Thatis, 0<:a)+<_:f1+f—<-:>9. O
1 1




Comments on Lipschitz Condition

Definition 3.3 /:G —> R". where G 1is open in R"". is said to satisfy a local

Lipschitz condition 1if for any (7, x,) € G, there exists a neighborhood (7,.x,) e

UcG such that f satisfies a Lipschitz condition on U . If U=R""_ the
corresponding Lipschitz condition is said to be global Lipschitz.

Remark 3.7 It 1s not easy in general to verify the Lipschitz condition by definition.

However, 1f l(;___ x) 1s continuous on Q. then, we can take

OX
0
L5 max | Lex).

(rx)eQ  ox

of |, . . |
where —=| — 1s the Jacobian matrix of f . Therefore,
ox |aox. | 1
i.j=ln

0

— 1scontmuouson Q = f 1sLipschitzon Q.
Ox

However, the opposite 1s not true! e.g. f(t.x)=|x| at x=0.




Remark 3.8 How to test that f is not Lipschitz?

We restrict us in R. It 1s similar in R". If Zl(f, x) exists except for x=ux,.
A%
. of . : : : .
and lim a—(z‘, x)=o0, then f(r,x) doesn’t satisfy Lipschitz condition on any QO
X=Xg oy

(or U) contamning x=x,.

. .0 - J@x)= f(t.x)
In fact. since lim f (1.x)=o, one has lIm %” — . Then. for
X=Xy ox XXy X— xCI'

any given K > 0, there exists & > 0, such that

[ (%) = f(t,xp) |> K|x—x,

-

whenever |x—x,|<¢& . Therefore, we cannot find Lipschitz constant L 1n any

domain containing x =x,.




Remark 3.9 A Lipschitz condition 1s a sufficient condition for uniqueness! It doesn’t
say anything for uniqueness if it is not Lipschitz. See an example as follows.

xIn|x| x#0

x’f(r,x){ 0 v=0’

where f(z.x) is continuous on R” and is not Lipschitz on any domain containing
x=0 (Homework). However, its explicit solution 1s solved as

x=zxexpice’} and x=0.
For any initial value (7,.x,)eR’. there exists a unique curve passing through




Summary

Extensibility Theorem 1s a bridge connecting local and global.

How to apply Extensibility Theorem 1s a main concern in the sequel.

e Local Lipschitz 1s a mild condition and most physical models have such a property.
But global Lipschitz 1s a restrict one and even linear time-varying systems may
not satisfy it.

How to verify the Lipschitz is a skillful work.




Homework

1) Solve the example in Remark 3.9.

2) Prove Extensibility Theorem II and IIL.

3) If x'=f(t.x). where feC and | f(t.x)||<al| x| +b for all (t.x)eR™ .
show that for any (z,,x,)€ R, the solution x(r) passing through (z,.x,)

has I =(—=.x).

4) Review today’s class.
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